Сравнение прогностических моделей, построенных с помощью разных методов машинного обучения, на примере прогнозирования результатов лечения бесплодия методом вспомогательных репродуктивных технологий
На портале РОАГ размещена статья «Сравнение прогностических моделей, построенных с помощью разных методов машинного обучения, на примере прогнозирования результатов лечения бесплодия методом вспомогательных репродуктивных технологий», опубликованная в № 2/2024 журнала «Акушерство и гинекология».
Драпкина Ю.С., Макарова Н.П., Васильев Р.А., Амелин В.В., Калинина Е.А.
- ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Минздрава России, Москва, Россия
Ключевые слова: Искусственный интеллект, вспомогательные репродуктивные технологии (ВРТ), репродуктивная медицина, машинное обучение, система поддержки принятия решений, случайный лес (Random Forest), эффективность ВРТ, частота наступления беременности
Сравнение прогностической способности логистической регрессии, алгоритма решающего дерева и Random Forest в отношении вероятности наступления беременности на основании клинико-анамнестических и эмбриологических данных пациентов в программе ВРТ.
Наиболее точным алгоритмом прогнозирования частоты наступления беременности в программе ВРТ стала модель на основе Random Forest, которая определила значимость следующих предикторов: остановка эмбрионов в развитии, триггер финального созревания ооцитов, количество эмбрионов отличного и среднего качества, продолжительность стимуляции, фактор бесплодия, индекс массы тела, уровни ФСГ и АМГ; а также подтвердила значимость предикторов, которые были определены на предыдущих этапах работы, при помощи алгоритма решающего дерева: наличие/отсутствие беременностей в анамнезе, параметры стимулированного цикла (число ооцитов MII), показатели спермограммы в день пункции, количество эмбрионов отличного и хорошего качества, а также качество эмбриона согласно морфологическим критериям оценки.
Для улучшения прогнозирования эффективности программы ВРТ требуются более качественные математические модели с интегральным подходом к решению задачи с использованием большой выборки пациентов с различными входными данными, представленными в сбалансированном объеме, а также дополнительные маркеры, определяющие эффективность программы ВРТ, позволяющие улучшить точность программного продукта.
В ретроспективное исследование были включены 854 супружеские пары. В исследовании были проанализированы клинико-лабораторные данные и параметры стимулированного цикла в зависимости от результативности программы ВРТ при помощи трех алгоритмов МО: логистической регрессии, решающего дерева и Random Forest.